Mathématiques avec Python et Ruby/Quaternions et octonions en Ruby

Un livre de Wikilivres.

Complexes[modifier | modifier le wikicode]

On a vu dans le chapitre précédent que pour Ruby, un nombre complexe z est essentiellement une structure abritant deux réels, accessibles par z.real et z.imag respectivement. La construction de Cayley-Dickson généralise ce point de vue: En prenant deux complexes a et b, on peut les regrouper dans une nouvelle structure qui est considérée comme un nombre: Un quaternion.

Dans toute la suite, on va profiter de la gestion des fractions offerte par cmath, avec

require 'cmath'

Quaternions[modifier | modifier le wikicode]

Definition et affichage[modifier | modifier le wikicode]

Définition[modifier | modifier le wikicode]

La définition d'un quaternion se fait dans une classe nommée Quaternion:

class Quaternion

end

La première méthode, l'initialisation, crée donc deux variables a et b (qui seront des complexes, mais Ruby ne le sait pas encore):

Initialisation[modifier | modifier le wikicode]
	def initialize(a,b)
		@a,@b = a,b
	end

Les nombres complexes a et b seront des propriétés du quaternion:


Propriétés a et b[modifier | modifier le wikicode]
	def a
		@a
	end
	
	def b
		@b
	end

Désormais on accède aux deux complexes a et b d'un quaternion q par q.a et q.b.

Affichage[modifier | modifier le wikicode]

Pour afficher un quaternion q avec puts(q), il est nécessaire de redéfinir (une sorte de surcharge) sa méthode de conversion en chaîne de caractères (string):

	def to_s
		'('+a.real.to_s+')+('+a.imag.to_s+')i+('+b.real.to_s+')j+('+b.imag.to_s+')k'
	end

La notation des points se lit de droite à gauche, par exemple a.real veut dire la partie réelle de a et q.a.real, la partie réelle du a de q.

Le quaternion de Ruby ne possède alors que deux propriétés, a et b, mais on va se rattraper sur les méthodes, qui opèrent sur un quaternion (ou deux):

Fonctions[modifier | modifier le wikicode]

Module[modifier | modifier le wikicode]

Le module d'un quaternion est un réel:

	def abs
		Math.hypot(@a.abs,@b.abs)
	end


Conjugué[modifier | modifier le wikicode]

Le conjugué d'un quaternion est un quaternion de même module que celui-ci:

	def conj
		Quaternion.new(@a.conj,-@b)
	end

Opérations[modifier | modifier le wikicode]

Addition[modifier | modifier le wikicode]

Pour additionner deux quaternions, on additionne leurs a respectifs, et leurs b respectifs, et on crée un nouveau quaternion à partir des deux nombres complexes obtenus:

	def +(q)
		Quaternion.new(@a+q.a,@b+q.b)
	end

Pour calculer et afficher la somme des quaternions p et q, il suffit alors d'entrer puts(p+q).

Soustraction[modifier | modifier le wikicode]

La soustraction des quaternions relève d'un principe analogue:

	def -(q)
		Quaternion.new(@a-q.a,@b-q.b)
	end

Multiplication[modifier | modifier le wikicode]

Le produit de deux quaternions est plus difficile à définir:

	def *(q)
		Quaternion.new(@a*q.a-@b*q.b.conj,@a*q.b+@b*q.a.conj)
	end

La multiplication des quaternions n'est pas commutative, comme le montre l'exemple suivant:

p=Quaternion.new(Complex(2,1),Complex(3,4))
q=Quaternion.new(Complex(2,5),Complex(-3,-5))
puts(p*q)
puts(q*p)

Division[modifier | modifier le wikicode]

Pour diviser un quaternion par un autre, on peut faire ainsi:

	def /(q)
		d=q.abs**2
		Quaternion.new((@a*q.a.conj+@b*q.b.conj)/d,(-@a*q.b+@b*q.a)/d)
	end

Comme ils ont le même module, le quotient d'un quaternion par son conjugué est égal à 1:

p=Quaternion.new(Complex(2,1),Complex(3,4))

puts((p/p.conj).abs)

Cet exemple révèle que , c'est-à-dire que , qui est une décomposition de comme somme de 4 carrés.

Résumé[modifier | modifier le wikicode]

La classe Quaternion de Ruby tient en entier dans un fichier plutôt léger, au vu de ses possibilités:

require 'cmath'

class Quaternion

	def initialize(a,b)
		@a,@b = a,b
	end
	
	def a
		@a
	end
	
	def b
		@b
	end
	
	def to_s
		'('+a.real.to_s+')+('+a.imag.to_s+')i+('+b.real.to_s+')j+('+b.imag.to_s+')k'
	end
	
	def +(q)
		Quaternion.new(@a+q.a,@b+q.b)
	end
	
	def -(q)
		Quaternion.new(@a-q.a,@b-q.b)
	end
	
	def *(q)
		Quaternion.new(@a*q.a-@b*q.b.conj,@a*q.b+@b*q.a.conj)
	end
	
	def abs
		Math.hypot(@a.abs,@b.abs)
	end
	
	def conj
		Quaternion.new(@a.conj,-@b)
	end
	
	def /(q)
		d=q.abs**2
		Quaternion.new((@a*q.a.conj+@b*q.b.conj)/d,(-@a*q.b+@b*q.a.conj)/d)
	end

end

Si on enregistre ce fichier sous le nom quaternions.rb, il suffit d'insérer require 'quaternions' pour être en mesure d'effectuer des calculs sur les quaternions.


Octonions[modifier | modifier le wikicode]

Ce qui est intéressant avec la construction de Cayley-Dickson utilisée ci-dessus pour les quaternions, c'est qu'elle se généralise: En définissant une structure (un objet) comprenant deux quaternions a et b, on définit un octonion.

Définition et affichage[modifier | modifier le wikicode]

Définition[modifier | modifier le wikicode]

Comme pour les quaternions, on décrit l'objet octonion dans une classe Octonion:

class Octonion

	def initialize(a,b)
		@a,@b = a,b
	end
	
	def a
		@a
	end
	
	def b
		@b
	end

Au passage on définit les propriétés a et b de l'octonion comme celles du quaternion, sauf que cette fois-ci ce ne sont plus des complexes mais des quaternions. Mais comme Ruby est faiblement typé, cette particularité n'apparaîtra que lorsque a ou b sera utilisé.

Affichage[modifier | modifier le wikicode]

Là encore, la méthode to_s se définit comme celle des quaternions, mais il y a 8 nombres à afficher au lieu de 4:

	def to_s
		'('+a.a.real.to_s+')+('+a.a.imag.to_s+')i+('+a.b.real.to_s+')j+('+a.b.imag.to_s+')k+('+b.a.real.to_s+')l+('+b.a.imag.to_s+')li+('+b.b.real.to_s+')lj+('+b.b.imag.to_s+')lk'
	end

Pour accéder au premier de ces nombres, que est la partie réelle du a de a, on note a.a.real. Autrement dit, on parcourt un arbre binaire, de profondeur 3.

Fonctions[modifier | modifier le wikicode]

Les fonctions sur les octonions se définissent presque comme celles sur les quaternions, Cayley-Dickson oblige:

Module[modifier | modifier le wikicode]

Comme pour les quaternions:

	def abs
		Math.hypot(@a.abs,@b.abs)
	end

Conjugué[modifier | modifier le wikicode]

	def conj
		Octonion.new(@a.conj,Quaternion.new(0,0)-@b)
	end

Opérations[modifier | modifier le wikicode]

Addition[modifier | modifier le wikicode]

Comme pour les quaternions, on additionne les octonions composante par composante (a avec o.a, b avec o.b):

	def +(o)
		Octonion.new(@a+o.a,@b+o.b)
	end

Soustraction[modifier | modifier le wikicode]

	def -(o)
		Octonion.new(@a-o.a,@b-o.b)
	end

Multiplication[modifier | modifier le wikicode]

	def *(o)
		Octonion.new(@a*o.a-o.b*@b.conj,@a.conj*o.b+o.a*@b)
	end

Non seulement la multiplication des octonions n'est pas commutative, elle n'est plus associative non plus:

m=Octonion.new(p,q)
n=Octonion.new(q,p)
o=Octonion.new(p,p)
puts((m*n)*o)
puts(m*(n*o))

Division[modifier | modifier le wikicode]

	def /(o)
		d=1/o.abs**2
		Octonion.new((@a*o.a.conj+o.b*@b.conj)*Quaternion.new(d,0),(Quaternion.new(0,0)-@a.conj*o.b+o.a.conj*@b)*Quaternion.new(d,0))
	end

Là encore, le quotient d'un octonion par son conjugué est de module 1:

puts(m/m.conj)
puts((m/m.conj).abs)

Résumé[modifier | modifier le wikicode]

L'objet Octonion de Ruby est lui aussi, assez léger:

class Octonion

	def initialize(a,b)
		@a,@b = a,b
	end
	
	def a
		@a
	end
	
	def b
		@b
	end
	
	def to_s
		'('+a.a.real.to_s+')+('+a.a.imag.to_s+')i+('+a.b.real.to_s+')j+('+a.b.imag.to_s+')k+('+b.a.real.to_s+')l+('+b.a.imag.to_s+')li+('+b.b.real.to_s+')lj+('+b.b.imag.to_s+')lk'
	end
	
	def +(o)
		Octonion.new(@a+o.a,@b+o.b)
	end
	
	def -(o)
		Octonion.new(@a-o.a,@b-o.b)
	end
	
	def *(o)
		Octonion.new(@a*o.a-o.b*@b.conj,@a.conj*o.b+o.a*@b)
	end
	
	def abs
		Math.hypot(@a.abs,@b.abs)
	end
	
	def conj
		Octonion.new(@a.conj,Quaternion.new(0,0)-@b)
	end
	
	def /(o)
		d=1/o.abs**2
		Octonion.new((@a*o.a.conj+o.b*@b.conj)*Quaternion.new(d,0),(Quaternion.new(0,0)-@a.conj*o.b+o.a.conj*@b)*Quaternion.new(d,0))
	end
	

end

En l'enregistrant sous le nom octonions.rb, il suffit d'écrire

require 'octonions'

pour être en mesure d'effectuer des calculs sur les octonions en Ruby.

Bibliographie[modifier | modifier le wikicode]

  • En fait, les quaternions existent déjà sous Ruby, à condition de les télécharger: [1]; sur le même site, l'auteur propose aussi des octonions.
  • Sur les octonions, le livre de John Baez est une lecture hautement conseillée: [2]